A Feynman-Kac Formula for Unbounded Semigroups

نویسنده

  • Barry Simon
چکیده

We prove a Feynman-Kac formula for Schrödinger operators with potentials V (x) that obey (for all ε > 0) V (x) ≥ −ε|x| − Cε. Even though e is an unbounded operator, any φ, ψ ∈ L with compact support lie in D(e) and 〈φ, eψ〉 is given by a Feynman-Kac formula.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous integral kernels for unbounded Schrödinger semigroups and their spectral projections

By suitably extending a Feynman-Kac formula of Simon [Canadian Math. Soc. Conf. Proc. 28, 317–321 (2000)], we study one-parameter semigroups generated by (the negative of) rather general Schrödinger operators, which may be unbounded from below and include a magnetic vector potential. In particular, a common domain of essential self-adjointness for such a semigroup is specified. Moreover, each m...

متن کامل

Wiener Integration for Quantum Systems: A Unified Approach to the Feynman-Kac formula

A generalized Feynman–Kac formula based on the Wiener measure is presented. Within the setting of a quantum particle in an electromagnetic field it yields the standard Feynman–Kac formula for the corresponding Schrödinger semigroup. In this case rigorous criteria for its validity are compiled. Finally, phase–space path–integral representations for more general quantum Hamiltonians are derived. ...

متن کامل

ua nt - p h / 97 03 03 1 v 1 1 8 M ar 1 99 7 Wiener Integration for Quantum Systems : A Unified Approach to the Feynman - Kac formula ∗

A generalized Feynman–Kac formula based on the Wiener measure is presented. Within the setting of a quantum particle in an electromagnetic field it yields the standard Feynman–Kac formula for the corresponding Schrödinger semigroup. In this case rigorous criteria for its validity are compiled. Finally, phase–space path–integral representations for more general quantum Hamiltonians are derived. ...

متن کامل

A Relation of Berezin-toeplitz Operators to Schrr Odinger Operators and the Probabilistic Representation of Berezin-toeplitz Semigroups

A class of functions is speciied which give rise to semibounded quadratic forms on weighted Bergman spaces and thus can be interpreted as symbols of self-adjoint Berezin-Toeplitz operators. A similar class admits a probabilistic expression of the sesqui-analytic integral kernel for the associated semigroups. Both results are the consequence of a relation of Berezin-Toeplitz operators to Schrr o...

متن کامل

Application of semi-analytic method to compute the moments for solution of logistic model

The population growth, is increase in the number of individuals in population and it depends on some random environment effects. There are several different mathematical models for population growth. These models are suitable tool to predict future population growth. One of these models is logistic model. In this paper, by using Feynman-Kac formula, the Adomian decomposition method is applied to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999